An improved synthesis of diiodonoradamantane

Savvas Ioannou, Athanassios V. Nicolaides *
Department of Chemistry, University of Cyprus, Nicosia 1678, Cyprus

A R T I C L E I N F O

Article history:

Received 23 April 2009
Revised 11 August 2009
Accepted 28 August 2009
Available online 2 September 2009

Abstract

The synthesis of 3,7-diiodo-tricyclo[3.3.1.0 ${ }^{3,7}$]nonane, the main precursor of noradamantene, by iodination of the corresponding diol via its dimesylate affords a threefold higher yield than the direct iodination of the diol. Neither the dimesylate nor the cyclic sulfate of the diol yields noradamantene upon reduction with sodium amalgam.

© 2009 Elsevier Ltd. All rights reserved.

Pyramidalized alkenes ${ }^{1}$ have attracted a great deal of attention because of their interesting properties. ${ }^{2,3}$ The homologous series of pyramidalized alkenes $\mathbf{1}$ has been studied systematically, and the first four members ($\mathbf{1}, n=0-3$) have been generated. Herein we describe research directed towards improving the synthesis of noradamantene ($\mathbf{1}, n=1$) with the aim of using this molecule as a building block for the synthesis of other polycyclic organic molecules.

Noradamantene can be generated conveniently and quantitatively by reduction of diiodide $2 .{ }^{4}$ The only known synthetic route to $\mathbf{2}$ is via iodination of diol $\mathbf{3}$. Diol $\mathbf{3}$ can be prepared ${ }^{5}$ from adamantane in 36% overall yield (route 1), ${ }^{6}$ from adamantanone in 60% overall yield (route 2$)^{7}$ or via condensation of dimethyl 1,3acetonedicarboxylate (4) with 1,1,3,3-tetramethoxypropane (5) ${ }^{8}$ in 50% overall yield (route 3) (Scheme 1). The third route is slightly less efficient than the second route, but requires one less step and simpler reactions and is the route to $\mathbf{3}$ that we have followed.

The iodination of $\mathbf{3}$ to 2 requires harsh conditions [48 h at $110^{\circ} \mathrm{C}$ in 95% phosphoric acid and an excess (six times the required stoichiometric amount) of NaI] with a reported yield of $40 \%{ }^{4}$ Our efforts to produce 2 from $\mathbf{3}$ under similar conditions resulted in yields of 20% at best (Table 1).

[^0]Alkenes 1, $n=2$, 3 can be easily formed at room temperature by reduction of their corresponding dimesylates with $\mathrm{Na} / \mathrm{Hg} .{ }^{9}$ Dimesylate $\mathbf{6}$ can be easily obtained from diol $\mathbf{3}$ following the known protocols, in almost quantitative yield. ${ }^{10-12}$ However, $\mathbf{6}$ is not reduced by $\mathrm{Na} / \mathrm{Hg}$, neither at room temperature nor in refluxing THF. Attempts to form the ditosylate of diol $\mathbf{3}$ led to the quantitative formation of the monotosylate, presumably due to steric hindrance.

Iodination of dimesylate $\mathbf{6}$ was attempted under a variety of conditions (Table 2). ${ }^{13}$ No reaction was observed when ionic liquids were used as solvents (Table 2, entries 1-5), even with 「 as the counter ion. When methanesulfonic acid (entry 6) was used as the solvent, only a trace of diiodide ($<5 \%$) was observed, however, some diol $\mathbf{3}$ was recovered along with starting material 6.

Concentrated phosphoric acid appears to be the best solvent for preparing $\mathbf{2}$ from 6, in agreement with the previous reports on the preparation of 2 from 3. ${ }^{4}$ We used commercially available 99% phosphoric acid ($\mathrm{mp} 40^{\circ} \mathrm{C}$) for this reaction. No special precautions were taken to exclude atmospheric moisture from the reaction mixture. The nature of the iodinating agent (Table 2 , entries 7,13 , and 14) does not appear to be important since NaI, KI, and CsI gave similar results. However, a large excess of NaI significantly increased the yield. The optimum excess appeared to be around a molar ratio of $60: 1$ (NaI:6) (Table 2, entry 18).

The reaction was monitored by gas chromatography. Dimesylate $\mathbf{6}$ was fully consumed within the first 4 h , forming diiodide $\mathbf{2}$ and a small amount of monoiodide 8. ${ }^{14}$ After an additional two hours, only $\mathbf{2}$ was detected. Reaction times greater than one day tended to lower the yield.

Diol $\mathbf{3}$ and dimesylate $\mathbf{6}$ react almost quantitatively (90% yield) with concentrated sulfuric acid to give the cyclic sulfate ester 7. ${ }^{15}$ Although cyclic sulfate esters are considered quite reactive and have found numerous synthetic applications recently, this was not the case with $7 .{ }^{16}$ Attempts to reduce 7 to noradamantene ($\mathbf{1}, n=1$) with $\mathrm{Na} / \mathrm{Hg}$ were not successful. Also, iodination of $\mathbf{7}$ was much slower than that of $\mathbf{6}$, requiring more than four days

Route 1

$61 \% \downarrow_{\downarrow} \begin{gathered}\mathrm{Br}_{2} \\ \mathrm{BBr}_{3} / \mathrm{AlBr}_{3}\end{gathered}$

Route 2

$98 \% \mid m$-CPBA

$85 \% \left\lvert\, \begin{gathered}\mathrm{HCl}, \mathrm{MeOH} \\ \text { reflux }\end{gathered}\right.$

3

Scheme 1. Synthetic routes to diol 3.
and resulting in a yield of less than 15%. We attribute this relative lack of reactivity to the structure of 7 , which unlike other known cyclic sulfates, is formally derived from a bis-tertiary vicinal diol. In addition, the tricyclic cage is such that neither rear attack nor
the facile formation of a (pyramidal) tertiary carbocation is possible.

In conclusion, the best precursor for the generation of noradamantene under ambient conditions remains diiodide 2 which is

Table 1
Synthesis of diiodide $\mathbf{2}$ from diol $\mathbf{3}$

Entry	Diol 3 (mmol)	Solvent (\%)	NaI: ${ }^{\text {a }}$	$T^{\text {b }}$ (${ }^{\circ} \mathrm{C}$)	t (d)	\% Yield of $\mathbf{2}^{\text {c }}$
1	1.9	$\mathrm{H}_{3} \mathrm{PO}_{4}(85)$	15	120	7	10
2	1.3	$\mathrm{H}_{3} \mathrm{PO}_{4}(85)$	15	120	2	13
3	0.4	$\mathrm{H}_{3} \mathrm{PO}_{4}(85)$	15	140	3	8
4	0.6	$\mathrm{H}_{3} \mathrm{PO}_{4}$ (99)	15	150	2	15
5	6.5	$\mathrm{H}_{3} \mathrm{PO}_{4}$ (99)	15	150	4	20
6	0.6	$\mathrm{H}_{3} \mathrm{PO}_{4}$ (99)	50	130	1	18

[^1]Table 2
Synthesis ${ }^{13}$ of diiodide $\mathbf{2}$ from dimesylate $\mathbf{6}$

Entry	Solvent	NaI: $6{ }^{\text {a }}$	$\begin{aligned} & T^{b} \\ & \left({ }^{\circ} \mathrm{C}\right) \end{aligned}$	t (d)	\% Yield of $\mathbf{2}^{\text {c }}$
$1^{\text {d,e }}$	[bmim] $\left[\mathrm{BF}_{4}\right] / \mathrm{CH}_{3} \mathrm{CN}$	10 (KI)	100	1	-
$2{ }^{\text {d,e }}$	[bmim] $\left[\mathrm{BF}_{4}\right]$	10 (KI)	150	1	-
$3^{\text {d,e }}$	[bmim] $\left[\mathrm{BF}_{4}\right] / \mathrm{H}_{3} \mathrm{PO}_{4} 99 \%$	20 (KI)	150	1	-
$4^{\text {f }}$	PMIMI	-	130	1	-
5	Tetrabutylammonium iodide	-	160	1	-
6	$\mathrm{CH}_{3} \mathrm{SO}_{3} \mathrm{H}(70 \%)$	10	120	1	<5
7	$\mathrm{H}_{3} \mathrm{PO}_{4}$ (99\%)	40	170	1	46
8	$\mathrm{H}_{3} \mathrm{PO}_{4}$ (99\%)	40	150	3	52
9	$\mathrm{H}_{3} \mathrm{PO}_{4}$ (99\%)	60	150	1	72
10	$\mathrm{H}_{3} \mathrm{PO}_{4}$ (99\%)	100	150	1	73
11	$\mathrm{H}_{3} \mathrm{PO}_{4}$ (99\%)	200	150	1	75
12	$\mathrm{H}_{3} \mathrm{PO}_{4}$ (99\%)	16	150	2	54
13	$\mathrm{H}_{3} \mathrm{PO}_{4}$ (99\%)	40 (KI)	170	1	44
14	$\mathrm{H}_{3} \mathrm{PO}_{4}$ (99\%)	$\begin{aligned} & 40 \\ & (\mathrm{CsI}) \end{aligned}$	170	1	40
$15^{\text {g }}$	$\mathrm{H}_{3} \mathrm{PO}_{4}$ (99\%)	60	100	1	35
$16^{\text {g }}$	$\mathrm{H}_{3} \mathrm{PO}_{4}$ (99\%)	60	170	1	45
$17^{\text {h }}$	$\mathrm{H}_{3} \mathrm{PO}_{4}$ (99\%)	200	150	6 h	77
$18^{\text {g }}$	$\mathrm{H}_{3} \mathrm{PO}_{4}$ (99\%)	60	150	6 h	75

${ }^{\text {a }}$ Molar ratio of NaI to $\mathbf{6}$. On a scale of 0.16 mmol of $\mathbf{6}$ unless otherwise specified.
${ }^{\mathrm{b}}$ External bath temperature.
${ }^{c}$ Yield of crude product.
${ }^{\text {d }}$ bmim $=1-n$-butyl-3-methylimidazolium.
${ }^{\mathrm{e}}$ On a scale of 0.5 mmol of 6 .
${ }^{\mathrm{f}}$ PMIMI = 1-methyl-3-propylimidazolium iodide.
${ }^{\mathrm{g}}$ On a scale of 0.32 mmol of $\mathbf{6}$.
${ }^{\mathrm{h}}$ On a scale of 0.26 mmol of $\mathbf{6}$.
accessible from diol 3. Indirect iodination of $\mathbf{3}$ via dimesylate $\mathbf{6}$, can be achieved within six hours in 60% overall yield. This indirect iodination method may be useful for other tertiary alcohols that do not form stable carbocations.

Acknowledgements

Financial support from the Research Promotion Foundation of Cyprus (ENTA $\Xi 0308 / 01$) and the University of Cyprus (SRP) is gratefully acknowledged. The A.G. Leventis Foundation is gratefully acknowledged for a generous donation which enabled the purchase of the NMR spectrometer at the University of Cyprus.

References and notes

1. (a) Borden, W. T. Chem. Rev. 1989, 89, 1095; (b) Borden, W. T. Synlett 1996, 711. 2. Vazquez, S.; Camps, P. Tetrahedron 2005, 61, 5147.
2. Nicolaides, A. In Strained Hydrocarbons. Beyond the van't Hoff and Lebel Hypothesis; Dodziuk, H., Ed.; Wiley-VCH, 2009; pp 112-122.
3. Renzoni, G. E.; Yin, T.; Borden, W. T. J. Am. Chem. Soc. 1986, 108, 7121.
4. Borden, W. T.; Ravindranathan, T. J. Org. Chem. 1971, 36, 4125.
5. (a) Baughman, G. L. J. Org. Chem. 1964, 29, 238; (b) Gagneux, A. R.; Meier, R. Tetrahedron Lett. 1969, 17, 1365; (c) Stetter, H.; Tacke, P. Chem. Ber. 1963, 25, 694.
6. Zalikowski, J. A.; Gilbert, K. E.; Borden, W. T. J. Org. Chem. 1980, 45, 346.
7. Bertz, S. H. J. Org. Chem. 1985, 50, 35.
8. Nicolaides, A.; Smith, J. M.; Kumar, A.; Barnhart, D. M.; Borden, W. T. Organometallics 1995, 14, 3475.
9. (a) Cabri, W.; Roletto, J.; Olmo, S.; Fonte, P.; Ghetti, P.; Songia, S.; Mapelli, E.; Alpegiani, M.; Paissoni, P. Org. Process Res. Dev. 2006, 10, 198; (b) Kshirsagar, T. A.; Hurley, L. H. J. Org. Chem. 1998, 63, 5722.
10. Storck, P.; Aubertin, A. M.; Grierson, D. S. Tetrahedron Lett. 2005, 46, 2919.
11. Synthesis of tricyclo[3.3.1.0 ${ }^{3,7}$]nonane-3,7-diyl dimesylate (6). To a solution of diol $3(1.00 \mathrm{~g}, 6.49 \mathrm{mmol})$ in pyridine $(10 \mathrm{~mL})$, mesyl chloride $\left(\mathrm{CH}_{3} \mathrm{SO}_{2} \mathrm{Cl}\right)(5.02 \mathrm{~mL}$, 65 mmol) was added slowly with stirring at ambient temperature. The mixture was then heated at $120^{\circ} \mathrm{C}$ for 5 h . After cooling, crushed ice (100 g) was added and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \times 20 \mathrm{~mL})$. The combined organic phase was washed with $2 \mathrm{M} \mathrm{HCl}(2 \times 40 \mathrm{~mL}), \mathrm{H}_{2} \mathrm{O}(2 \times 20 \mathrm{~mL})$, saturated aqueous $\mathrm{NaHCO}_{3}(2 \times 20 \mathrm{~mL})$, and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. After filtration and removal of the solvent under reduced pressure, a brown solid ($1.92 \mathrm{~g}, 96 \%$) was isolated. Recrystallization from THF/hexane afforded pure $\mathbf{6}(1.71 \mathrm{~g}, 85 \%$) as colorless crystals, mp $127-128^{\circ} \mathrm{C}$; $v_{\max }(\mathrm{KBr}) 3449,2943,1464,1414,1341,1190,1169$, $1101,1018,976,955,856,824,802,760,669,615,565,515,474 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}$ ($\left.300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 3.10\left(6 \mathrm{H},-\mathrm{CH}_{3}, \mathrm{~s}\right), 2.50\left(6 \mathrm{H}_{(4 \mathrm{eq}+2 \mathrm{CH})}, \mathrm{d}, J 6.9 \mathrm{~Hz}\right), 2.26\left(4 \mathrm{H}_{\mathrm{ax}}, \mathrm{d}\right.$, $J 9.0 \mathrm{~Hz}), 1.51\left(2 \mathrm{H}_{\text {bridge }}, \mathrm{s}\right) ; \delta_{\mathrm{C}}\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 91.30(-\mathrm{CO}), 47.42\left(-\mathrm{CH}_{2}\right)$, $40.60\left(-\mathrm{CH}_{3}\right), 34.98(-\mathrm{CH}), 32.28\left(-\mathrm{CH}_{2}\right.$ bridge). Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{O}_{6} \mathrm{~S}_{2}$: C, 42.6; H, 5.8; S, 20.7. Found: C, 42.3; H, 5.7; S, 20.3. HRMS (TOF MS ES+) calcd for C11H1906S2 311.0623 found: 311.0629 .
12. Synthesis of 3,7-diiodo-tricyclo $\left[3.3 .1 .0^{3,7}\right.$]nonane $2 .{ }^{5}$ In a round-bottomed flask equipped with a reflux condenser, $\mathrm{H}_{3} \mathrm{PO}_{4}(99 \%, 15 \mathrm{~g})$, dimesylate $3(80 \mathrm{mg}$, $0.26 \mathrm{mmol})$, and $\mathrm{NaI}(7.74 \mathrm{~g}, 52 \mathrm{mmol})$ were added. The mixture was stirred at $150^{\circ} \mathrm{C}$ for 6 h . After cooling, $\mathrm{H}_{2} \mathrm{O}(100 \mathrm{~mL})$ was added slowly to the mixture. The resulting purple solution was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \times 50 \mathrm{~mL})$ and the combined organic phase was washed with aqueous sodium thiosulfate $(1 \times 50 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and the solvent was removed under vacuum to give $2(74 \mathrm{mg}, 77 \%)$. Purification by dry flash chromatography (100% hexane) afforded 2 ($69 \mathrm{mg}, 72 \%$) as colorless crystals, mp $130-131^{\circ} \mathrm{C}$; $v_{\max }(\mathrm{KBr}) 2926$, $1450,1433,1333,1290,1229,1151,1103,1024,970,930,903,862,849,793$, $770,500(\mathrm{C}-\mathrm{I}) \mathrm{cm}^{-1} ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 2.76\left(4 \mathrm{H}_{\mathrm{eq}}, \mathrm{d}, J=12.0 \mathrm{~Hz}\right), 2.45\left(4 \mathrm{H}_{\mathrm{ax}}\right.$, $\mathrm{d}, J=10.8 \mathrm{~Hz}), 1.91(2 \mathrm{H}, \mathrm{s},-\mathrm{CH}), 1.63\left(2 \mathrm{H}, \mathrm{s},-\mathrm{CH}_{2}\right.$ bridge $) ; \delta_{\mathrm{C}}\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $57.69\left(-\mathrm{CH}_{2}\right), 53.34(-\mathrm{CI}), 39.38(-\mathrm{CH}), 30.60\left(-\mathrm{CH}_{2}\right.$ bridge $)$.
13. In partially completed iodination reactions small amounts of 3-iodo-7-hydroxy-tricyclo[3.3.1.0 $0^{3,7}$]nonane (8) were present. Compound $\mathbf{8}$ was isolated by chromatography (20% hexane $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$) as a light-yellow crystalline solid: $\operatorname{mp} 52-54^{\circ} \mathrm{C}$; $v_{\max }(\mathrm{KBr}) 3228(\mathrm{O}-\mathrm{H}), 2930,1722,1454$, $1398,1344,1331,1300,1244,1215,1184,1136,1109,1063,1007,962,937$, $907,870,816,718,631,520,459,422,411 ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 2.68\left(2 \mathrm{H}_{\mathrm{eq}-\mathrm{I}}\right.$, dd, $J>2,12.9 \mathrm{~Hz}), 2.40\left(2 \mathrm{H}_{\mathrm{ax}-\mathrm{I}}, \mathrm{dd}, J=2.1,11.1 \mathrm{~Hz}\right), 2.31(2 \mathrm{H}, \mathrm{s},-\mathrm{CH}), 2.10(1 \mathrm{H}, \mathrm{s}$, $-\mathrm{OH}), 1.98\left(2 \mathrm{H}_{\mathrm{eq}-\mathrm{OH}}, \mathrm{dd}, J>2,12.3 \mathrm{~Hz}\right), 1.88\left(2 \mathrm{H}_{\mathrm{ax}-\mathrm{OH}}, \mathrm{dd}, J>2,10.8 \mathrm{~Hz}\right), 1.55$ $\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right.$ bridge); $\delta_{\mathrm{C}}\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 82.46(-\mathrm{CO}), 57.33\left(-\mathrm{CH}_{2}\right), 54.62(-\mathrm{CI})$, $48.59\left(-\mathrm{CH}_{2}\right), 37.92(-\mathrm{CH}), 31.69\left(-\mathrm{CH}_{2}\right.$ bridge $)$.
14. Synthesis of tricyclo[3.3.1.0 ${ }^{3,7}$]nonane-3,7-diol cyclic sulfate 7. Diol 3 (500 mg , 3.25 mmol) was added to concd $\mathrm{H}_{2} \mathrm{SO}_{4}(95-97 \%, 5 \mathrm{~mL})$ and the resulting mixture was stirred at $130^{\circ} \mathrm{C}$ for 1 h . After cooling, $\mathrm{H}_{2} \mathrm{O}(100 \mathrm{~mL})$ was added very slowly. The solution was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \times 20 \mathrm{~mL})$, and the combined organic phase was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and the solvent was removed under vacuum to give crude $7(629 \mathrm{mg}, 90 \%) . \mathrm{Mp} 117-118^{\circ} \mathrm{C}$; $v_{\max }(\mathrm{KBr}) 2955$, $2922,2853,1460,1382,1337,1306,1242,1202,1090,960,837,812,777 ; \delta_{\mathrm{H}}$ $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 2.65(2 \mathrm{H}, \mathrm{s},-\mathrm{CH}), 2.32\left(4 \mathrm{H}_{\mathrm{eq}}, \mathrm{d}, J=11.1 \mathrm{~Hz}\right), 2.19\left(4 \mathrm{H}_{\mathrm{ax}}, \mathrm{d}\right.$, $J=10.8 \mathrm{~Hz}), 1.55\left(2 \mathrm{H}, \mathrm{s},-\mathrm{CH}_{2}\right.$ bridge $) ; \delta_{\mathrm{C}}\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 94.47(\mathrm{C}-\mathrm{O}), 46.44$ $\left(\mathrm{CH}_{2}\right), 37.04(\mathrm{CH}), 33.00\left(\mathrm{CH}_{2}\right.$ bridge). Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{O}_{4} \mathrm{~S}: \mathrm{C}, 50.0 ; \mathrm{H}, 5.6$; S, 14.8. Found: C, $50.4 ; \mathrm{H}, 5.6 ; \mathrm{S}, 14.4$.
15. Byun, H.-S.; He, L.; Bittman, R. Tetrahedron 2000, 56, 7051.

[^0]: * Corresponding author. Tel.: +357 22892784.

 E-mail address: athan@ucy.ac.cy (A.V. Nicolaides).

[^1]: ${ }^{\text {a }}$ Molar ratio of NaI to 3 .
 ${ }^{\mathrm{b}}$ External bath temperature.
 ${ }^{\text {c }}$ Yield of crude product.

